

CURRICULUM GRID

	KEY LEARNING OUTCOMES	Chapters					
Objective Number		Getting Started	Intro to Mechatronics	Drawing Robot	Mobile Rover	Self-balancing motorcycle	
Mecha	tronics						
1	Basics of the Arduino environment						
2	Introduction to microcontrollers with the Nano 33 IoT board and Nano Motor Carrier						
3	Characteristics of different types of motors: DC motors and servo motors						
4	H-bridge fundamentals: Driving and controlling the speed of a DC motor						
5	Motor Characterization: dead zone and saturation						
6	Application of encoders for speed and position monitoring						
7	Use of Pulse Width Modulation (PWM) for speed control of DC motors						
8	Acceleration and angular rotation measures using IMU Sensor						
9	Working with li-ion batteries						
10	Communicate with the robots 'various sensors and actuators to analyze data or control						
11	Use of wireless communication to control robots						
12	Integration of different subsystems to build a complex project						
13	Dynamic system modeling with Simscape						
14	Proportional Derivative control						
15	Real time data visualization and monitoring						
Engine	ering Skills						
1	Application of geometry, physics, calculus, symbolic math, and image processing concepts						
2	Development of a complete application workflow from start to finish						
3	Collaboration and team work for speed up development						
4	Troubleshooting and problem solving skills						
5	Application of safety mechanisms in your design						
6	Familiarity with professional softwares used in many fields of engineering						
7	Work with datasheets						
8	Embedded software design						
9	Learn good coding practices						
MATLA	В						
1	Introduction to MATLAB user interface						
2	Basics of MATLAB programming language						
3	Connect to an Arduino and Arduino-based robots from MATLAB						
4	Control robots by writing MATLAB apps, functions, and scripts						
5	Understand and use complex MATLAB functions to control de robot						
6	Real time image adquisition from webcam						
7	Convert, filter, and analyze images using image processing functions						

	KEY LEARNING OUTCOMES	Chapters							
Objective Number		Getting Started	Intro to Mechatronics	Drawing Robot	Mobile Rover	Self-balancing motorcycle			
8	Data conversion from pixels to physical distances								
9	Calculating distance and motor position using trigonometry								
10	Conditionals and loops								
11	Manipulate data in a cell array								
Simulink									
1	Introduction to visual programming with Simulink								
2	Basics of creating Simulink models								
3	Visualizing simulation data in the Simulink environment								
4	Visualizing deployed data in embedded hardware in the Simulink environment								
5	Use Simulink for rapid prototyping and controller design								
6	Control robots through Simulink								
7	Reading values from encoders and IMU sensor								
8	Open-loop and closed-loop motor control								
9	Applying geometry and physics concepts to code								
10	Modelling basic mathematical functions in blocks								
11	Simulate motion using kinematic equations								
12	Performing calibration procedures								
13	State logic design: model reactive systems via state machines and flow charts with Stateflow								
14	Design feedback control algorithms								