
AI

LLVM

Matter

Lua

RISC-V

Martin Malý

Edice CZ.NIC

Moderní technologie
pro hobby elektroniku

Kity, bity,
neurony

Vydavatel:
CZ.NIC, z. s. p. o.
Milešovská 5, 130 00 Praha 3
Edice CZ.NIC
www.nic.cz

1. vydání, Praha 2025
Kniha vyšla jako 35. publikace v Edici CZ.NIC.
ISBN 978-80-88168-85-0

© 2025 Martin Malý
Toto autorské dílo podléhá licenci Creative Commons BY-ND 4.0
(https://creativecommons.org/licenses/by-nd/4.0/). Dílo však může být překládáno a následně
šířeno v písemné či elektronické formě, na území kteréhokoliv státu, za předpokladu, že nedojde
ke změně díla a i nadále zůstane zachováno označení autora a prvního vydavatele díla, sdružení
CZ.NIC, z. s. p. o. Překlad může být šířen pod licencí CC BY-ND 4.0.

KITY, BITY, NEURONY

Martin Malý

http://www.nic.cz
https://creativecommons.org/licenses/by-nd/4.0/

ISBN 978-80-88168-85-0

—  Martin Malý

—  Edice CZ.NIC

Kity, Bity, Neurony

Předmluva vydavatele

—  Předmluva vydavatele

9

Předmluva vydavatele

Milá čtenářko, milý čtenáři,

Vámi otvíraná kniha, nazvaná Kity, bity, neurony, představuje již šestou publikaci Martina Malého
vydávanou v Edici CZ.NIC. Autor se tentokrát zamýšlí nad dynamickým vývojem v celém „oboru
bastlení“ – domácího kutilství. Ačkoliv se podle autora někteří čtenáři dříve dožadovali návratu
k tranzistorům, kniha se místo nostalgie soustředí na to, co se ve světě hobby elektroniky objevilo
relativně nedávno.

Cílem autora bylo ukázat nové možnosti domácího kutilství, představit zajímavé oblasti a být
užitečným průvodcem v domácím bastlení zvláštnímu druhu člověka kutilu elektrotechnickému.
Martin Malý se v knize postupně věnuje v jednotlivých kapitolách softwaru a hardwaru, modu-
lům, praktickým aplikacím a v neposlední řadě umělé inteligenci a neuronovým sítím. Jako bonus
si čtenář může postavit třeba bezdotykovou lampičku ovládanou gesty.

Kniha vzdává hold domácímu kutilství, které autor rehabilituje jako umění vytvořit něco vlast-
níma rukama, s maximem kreativity a radosti z objevování. Bastlení je totiž nutné vnímat ne
jako způsob jak získat hotové bezchybné řešení, ale jako kreativní proces učení a radosti z řešení
problémů. A právě radost z tvoření a touha porozumět všudypřítomným technologiím předsta-
vují základní vlastnosti kutilského člověčenství. Přejeme vám příjemné čtení a neutuchající touhu
stavět, objevovat a žít.

Jaromír Novák, CZ.NIC
Praha, 25. listopadu 2025

Poděkování

—  Poděkování

13

Poděkování

Když jsem psal poděkování do své první knihy, netušil jsem, že jednou budu psát poděkování do
knihy šesté. Ale stalo se to, a to především díky mnoha skvělým lidem.

V první řadě děkuji lidem, kteří tuto knihu v Edici CZ.NIC připravili. Jmenovitě pak paní
Kateřině Slavíkové, bez níž by tyto knihy ani nevznikaly. Na počátku je vždycky její telefonát
s nenápadnou otázkou „…a nechcete zase něco napsat?“ Nedokážu odmítnout!

Děkuji lidem, kteří bastlení považují za radost, ne za výsadu, a kteří mi pomohli radou, tipem,
námětem, nebo jen svým pozitivním příkladem. Pro mě jsou duší českého bastlení. Za všechny
jmenuji Michala Ševčíka, Petra Šrámka, Martina Kiklhorna, Juraje Michálka, Konstantina Lásku,
Oldřicha Horáčka, Martina Wolkera, Martina Kocourka, ale kdybych chtěl být spravedlivý, tak
bych musel jmenovat všechny ty lidi, co znám z Twitteru (nyní X) jen přezdívkami a podle jejich
profilových fotografií.

Úplně nejvíc pak děkuji vám všem, kteří moje knihy čtete a kupujete. Vždycky mě potěší, když se
ke mně někdo hlásí a říká: „Jé, já četl vaši knížku!“ – a co teprve když je z oboru, kde bych to moc
nečekal. Díky za tahle milá potěšení!

Speciální poděkování za toleranci a trpělivost patří mojí partnerce Lence.

Díky!

Předmluva

—  Předmluva

17

Předmluva

Napsal jsem pět knih o elektronice. Když jsem dopsal první, věděl jsem, že bude mít pokračování
o mikroprocesorech a stavbě vlastních počítačů. Když jsem psal druhou, věděl jsem, že bude mu-
set být třetí, o FPGA. A pak jsem myslel, že už jsem napsal všechno, co jsem chtěl o elektronice
napsat…

Jenže díky vám, čtenářům, vzniklo i speciální „školní“ pojednání o Micro:bitu, a když jsem ho do-
pisoval, přišly nové modely ESP32, spousta konstrukcí, a bylo jasno: další kniha musí být o ESP32!

I po páté knize jsem si říkal, že už asi nebudu mít o čem psát, ale obor jde rychle dopředu. Nemys-
lím elektroniku, tam je to nepochybné; myslím „obor bastlení“, domácího elektronického kutilství.
Když se mi opět ozval vydavatel s tím, jestli nechci napsat další knihu, tak jsem se zamyslel: o čem
by měla být?

Někteří navrhovali vrátit se k tranzistorům. Jiní navrhovali rádio. Obojí jsou zajímavé oblasti.
Ano, uznávám, že „bastlení“ s tranzistory má svoje kouzlo, i když leckdy nostalgické: vůně pálené
kalafuny, olověná pachuť na jazyku, tranzistory s dlouhými nožičkami rozkročené nad změtí drát-
ků, v lepším případě nad deskou plošných spojů, měření, nastavování pracovního bodu zesilovače,
vinutí cívek („viňte 624 závitů vodičem 0,1 mm a každou vrstvu proložte papírem. U závitu 218
udělejte odbočku. Na cívku naviňte 12,5 závitu lakovaným vodičem 1 mm“ – pamatujete?) a oži-
vování toho všeho… Tranzistory mi voní zažloutlými listy knih, které jsem četl a miloval jako
kluk, ale svět se za těch skoro padesát let posunul. Když dnes postavíte rádio tak, jak se stavělo
„tenkrát“, moc toho k poslouchání nechytíte. Většina vysílání je už FM nebo DAB+ a to je už
daleko za „tranzistorovým“ obzorem. Samozřejmě si můžete postavit přijímač s FM i DAB, kde
bude anténa, trocha bižuterie a jeden integrovaný obvod, co se o všechno stará, ale zas tam chybí
ta tranzistorová romantika.

Nakonec jsem si říkal, že tranzistory jsou „nyní již nestárnoucí“ a vrátit se k nim mohu kdykoli.
A když jsem se rozhlížel, co se ve světě hobby elektroniky děje, tak mi došlo, že se musím trošku
vrátit ke konceptu první trilogie: základní principy, ukázky zapojení, různé možnosti, novinky,
techniky.

Tato kniha je věnovaná věcem, které se objevily v bastlířském světě relativně nedávno. Rozdělil
jsem ji do čtyř hlavních částí: software, hardware, moduly a AI, respektive neuronové sítě.

V oblasti software se objevují nové jazyky, které v některých situacích nabourávají téměř absolutní
dominanci C/C++. Kromě Pythonu a jeho variant pro MCU jde třeba o skriptovací jazyk Lua,
který se hodí pro psaní různých pluginů a uživatelských kódů, nebo o „bare metal“ verzi Rustu, což
je jazyk s velmi pomalou učící křivkou, ale na konci jste odměněni velmi bezpečnými programy,
protože vás už samotný překladač chrání od konstrukcí, ve kterých by mohlo docházet k problé-

—  Předmluva

18

mům. Zařadil jsem i nový jazyk Zig, který je zajímavou alternativou k C a zároveň s ním dokáže
skvěle koexistovat. Popíšeme si i principy LLVM, který se stal základem mnoha překladačů.

Hardwarová část obsahuje seznámení s Raspberry Pi Pico 2, s velmi levným MCU CH32V003, se
zajímavým duálním Milk-V Duo, a přidal jsem i novou generaci ESP32. Když se na tyto obvody
podíváte s odstupem, uvidíte, že je jedna věc spojuje, a to je architektura RISC-V. Tato modulární
architektura, odvozená ze známé architektury MIPS, je open-source, takže ji výrobci čipů mohou
používat ve svých zařízeních bez nutnosti platit licenční poplatky. To spolu s bohatými možnostmi
přizpůsobení z ní dělá zajímavou a perspektivní alternativu například k ARM. Proto jsem velkou
část věnoval popisu této architektury.

Ve třetí části se budu věnovat praktickým věcem, u kterých jsem si říkal, že by měly zaznít. Napří-
klad jak ve vlastních konstrukcích vyřešit napájení přes stále populárnější USB-C, jaké zvolit čidlo
a jaké jsou možnosti, a popisu některých projektů, které jsou zajímavé i jako inspirace k vlastní
tvorbě.

A poslední část knihy věnuji neuronovým sítím. Je bez debat, že tato technologie bude v dalších
letech téměř všude, a díky rozvoji elektroniky bude stále častěji dostupná i pro domácí hobby pro-
jekty. Mnoho čipů už dnes nabízí různé „AI akcelerátory“ a koprocesory, proto jsem zařadil tuto
sekci. Popíšeme si základní principy neuronových sítí (perceptron, vícevrstvé sítě, backpropagati-
on, učení), jejich použití v mikrokontrolérových zařízeních (kvantizace sítě pro malé procesory),
používané knihovny a příklad toho, jak spustit na malém jednočipu vlastní neuronovou síť.

Dlouhé zdrojové kódy k příkladům a užitečné odkazy najdete na https://kbn.elektroniche.cz

https://kbn.elektroniche.cz

Obsah

—  Obsah

21

Předmluva vydavatele � 7

Poděkování � 11

Předmluva � 15

1  Chvála bastlení � 23

2  Software � 27
2.1 Mikrokontroléry nejsou jen C/C++ a Python � 27
2.2 Lua: skriptování pro mikrokontroléry � 48
2.3 Překladače pro RISC-V � 102
2.4 LLVM � 111
2.5 Intermezzo: 1925-1950 – Elektronková éra � 120

3 Hardware � 125
3.1 Raspberry Pi Pico 2 a mikrokontrolér RP2350 � 125
3.2 CH32V003 � 138
3.3 ESP32 nové generace � 160
3.4 Milk-V Duo � 163

4 RISC-V � 181
4.1 Standardní rozšíření RISC-V � 182
4.2 Hlavní rozdíly procesorů RISC-V oproti procesorům ARM � 183
4.3 Implementace RISC-V � 183
4.4 Vývojářské nástroje � 184
4.5 Koncepce instrukčního soubor RISC-V � 185
4.6 Instrukce RISC-V � 187
4.7 Přehled instrukcí RV32I � 209
4.8 Příklady kódu � 211
4.9 Architektura Hazard3 � 212
4.10 Intermezzo: 1950-1975 – Tranzistorová revoluce � 215

5 Projekty a moduly � 219
5.1 USB-C pro bastlíře � 219
5.2 Základní senzory � 225
5.3 Další snímače � 238
5.4 Projekt: Bezdotyková lampička ovládaná gesty � 245
5.5 Neviditelný vrátný: mikrovlnný senzor HW-MS03
 + Raspberry Pi Pico 2 (RP2350 RISC-V) � 256
5.6 Matter/Thread v praxi � 265
5.7 Intermezzo: 1975-2000 – Digitální věk � 278

—  Obsah

22

6 Umělá inteligence � 283
6.1 Základy strojového učení � 283
6.2 Rozpoznávání gest pomocí ESP32 a TinyML � 347
6.3 Intermezzo: 2000-2025 – Modulární svět � 357

7 Dodatky � 361
7.1 Milk-V Duo S � 361
7.2 Milk-V Duo 256M � 366
7.3 Clustery v protokolu Matter � 368

8 Doslov � 379

1  Chvála bastlení

—  1  Chvála bastlení

25

1  Chvála bastlení

V této knize vzdávám hold domácímu kutilství, zaměřenému na elektroniku. Rukopis dokončuji
na podzim roku 2025, a říkám si, že je to docela dobrá příležitost podívat se na „posledních sto
let s elektronikou“ očima domácích kutilů. I proto jednotlivé části knihy oddělují historická inter-
mezza, popisující jednotlivá čtvrtstoletí, nejprve s elektronkami, pak s tranzistory, poté s integro-
vanými obvody, dnes s jednočipovými mikrokontroléry.

Pro podobné činnosti se vžilo označení „bastlení“, které je trochu pejorativní, ale já bych ho rád
alespoň pro tuto knihu rehabilitoval.

„To je ale zbastlené,“ říkávali starší a kroutili hlavou nad poličkou, která se mírně nakláněla dole-
va. V jejich hlase bylo znát zklamání a slovo „zbastlit“ znělo z jejich úst jako obžaloba. Jako když
řekneme, že je něco odfláknuté, nedodělané, provizorní. V běžné řeči se bastlení stalo synonymem
pro provizorní řešení, hala bala, nakřivo, polorozpadlé, podepřené kusem kartonu a zafixované
izolepou.

Jenže pak je tu ještě jiné bastlení. To, které znamená pravý opak. Bastlení jako umění vytvořit něco
vlastníma rukama, s minimem prostředků, ale s maximem kreativity. Bastlení jako proces objevo-
vání, učení se a radosti z tvoření.

Každý bastlíř to zná, ten moment, kdy se v garáži nebo u pracovního stolu rodí něco nového. Není
to proto, že by to nutně potřeboval. Není to proto, že by si to nemohl koupit hotové. Je to proto,
že chce pochopit, jak věci fungují. Chce jim dát něco ze sebe. A především si chce užít tvorbu.

Bastlení je jako jazz. Můžete poslouchat dokonale nahranou studiovou skladbu, nebo se můžete
posadit k pianinu a začít experimentovat. Bude to zpočátku skřípat, některé tóny nebudou sedět,
ale bude to vaše. A časem, s každým dalším pokusem, s každou další hodinou strávenou učením
a zkoušením, se začne rodit něco jedinečného.

V době, kdy máme všechno na dosah ruky, kdy stačí několik kliknutí k objednání prakticky čeho-
koliv, může bastlení působit jako přežitek. Proč trávit hodiny stavbou vlastního teploměru, když
si můžeme koupit profesionální meteostanici? Proč pájet vlastní zesilovač, když jsou k dispozici
špičkové audio systémy? Proč programovat vlastní domácí automatizaci, když existují hotová ře-
šení?

Odpověď je jednoduchá: Protože bastlení není způsob, jak mít systém pro automatizaci, meteo-
stanici nebo osvětlení. Podstatný je proces, ta zvláštní magie, která se děje, když vezmete do ruky
pájku, když poprvé připojíte nový senzor, když váš vlastnoručně napsaný program konečně udělá
přesně to, co jste chtěli. Nebo když něco nefunguje a vy musíte přijít na to proč. Bastlení je radost
z řešení problémů a uspokojení z překonávání překážek.

—  1  Chvála bastlení

26

Bastlení je také komunitní věc. Spojuje lidi, kteří si navzájem pomáhají, sdílejí své zkušenosti, radí
se a inspirují se. Bastlení jsou i večery strávené na internetu hledáním řešení zdánlivě neřešitelné-
ho problému, ale i nadšení, když konečně najdete někoho, kdo řešil něco podobného. Je to sdílená
radost z úspěchu i společném učení se z neúspěchů.

V době, kdy se věci stávají stále více uzavřenými a nepřístupnými běžnému člověku, kdy jsou naše
zařízení černými skříňkami, do kterých nemůžeme nahlédnout, je bastlení aktem svobody. Je to
způsob, jak si zachovat kontrolu nad technologiemi, které nás obklopují. Jak jim porozumět, jak je
přizpůsobit našim potřebám, jak je učinit opravdu našimi.

Takže až příště někdo řekne, že něco je „zbastlené“, možná je čas se zamyslet. Možná je čas připo-
menout, že bastlení je ve skutečnosti projevem té nejvyšší péče a lásky k řemeslu. Je to způsob, jak
věcem vdechnout duši, jak jim dát příběh. A především je to způsob, jak zůstat zvídavými dětmi
v těle dospělých, jak si zachovat radost z objevování a tvoření.

Protože bastlení není jen sestavování elektroniky. Je to svoboda tvořit, odvaha experimentovat
a radost z poznávání. Bastlení v nás otevírá to nejlepší, co v nás je: tvořivost, zvídavost a nekoneč-
nou touhu učit se nové věci.

A možná právě proto si zaslouží, abychom ho psali s velkým B.

2  Software

—  2  Software

29

2  Software

2.1 Mikrokontroléry nejsou jen C/C++ a Python

Embedded vývoji (programování vestavěných systémů) tradičně dominuje jazyk C/C++. Je z po-
vahy nízkoúrovňový a má malou režii. V současnosti však existují i modernější alternativy zamě-
řené na vyšší spolehlivost, produktivitu či lepší správu paměti, které můžete použít na platformách
jako Arduino (AVR), ESP32 (Xtensa/RISC-V), RP2040 (ARM Cortex-M0+) nebo RP2350.
Představíme si dva takové jazyky, Nim a FORTH, z pohledu jejich současného využití v takových
zařízeních.

V dalších kapitolách si podrobněji probereme jazyky Lua a Zig. Jeden z nich je vhodný pro ap-
likace, kde chceme dát možnost uživatelům psát vlastní bezpečné skripty a provádět je přímo na
zařízení, druhý je zajímavou alternativou k C, která přidává nové vlastnosti, ale nerozbíjí kompa-
tibilitu.

Taky se budeme věnovat toolchainům, tedy řetězcům nástrojů, které jsou spolu provázané a zpra-
vidla jeden nástroj používá výstup druhého. Typicky jde o řetězec s navazujícími komponentami:
překladač do nižšího jazyka → překladač do objektového kódu → spojovací program (linker).
I když se volají třeba jedním příkazem, tak tam stále někde v pozadí je spousta nástrojů…

2.1.1 Nim

Nim (dříve Nimrod) je vyšší programovací jazyk, který přináší do systémového programování
syntaktickou lehkost podobnou Pythonu, ale kompiluje se do efektivního nativního kódu (přes
C/C++, nebo přímo). Oficiálně je prezentován jako „staticky typovaný kompilovaný systémový pro-
gramovací jazyk“, který kombinuje osvědčené koncepty z Pythonu, Ady a Moduly-2. Je to jazyk
multiparadigmatický: podporuje imperativní strukturovaný styl, funkcionální prvky (vyšší funkce,
lambda výrazy), objektově orientované programování (dědičnost, metody) i metaprogramování
pomocí maker.

Nim je navržen s ohledem na čitelnost a expresivitu kódu: syntaxi má podobnou Pythonu (výraz-
ný rys je např. odsazovací bloková struktura místo složených závorek), ale zároveň nabízí nízko-
úrovňové konstrukce (např. ukazatele, bitovou aritmetiku), potřebné pro systémové programování.
Díky této kombinaci je Nim někdy označován za jazyk, který propojuje skriptovací jazyky a vý-
konné kompilované jazyky.

—  2  Software

30

Hlavní rysy jazyka

Nim klade důraz na efektivitu kódu a flexibilní správu paměti. Výchozí implementace překládá
Nim do jazyka C/C++ (případně do Javascriptu pro web), jedná se tedy o transpiler. Zkompilo-
vané programy nevyžadují žádný virtuální stroj ani runtime prostředí nebo knihovny. Výsledkem
je nativní samostatný spustitelný soubor.

Nim nabízí několik režimů správy paměti. Tradičně používal garbage collector (nepřetržitý běho-
vý GC, podobně jako Go nebo Java), ovšem novější verze zavedly deterministickou správu paměti
pomocí destruktorů a přemisťovací sémantiky, inspirovanou C++ a Rustem. To znamená, že v mo-
derním Nimu (od verze 1.4) můžete využít tzv. ARC (automatic reference counting) nebo ORC, tj.
automatické počítání referencí na objekt s předvídatelným uvolňováním objektů ve chvíli, kdy už
na ně neexistuje žádný odkaz. Pro MCU je to zásadní, protože Nim umí pracovat zcela bez garb-
age collectoru. Stačí přepnout režim (--gc:arc nebo --gc:none při kompilaci). V režimu --gc:none
je odpovědnost za uvolňování paměti plně na programátorovi (podobně jako v C), nicméně díky
tomu můžete využít Nim i v systémech s extrémně malou pamětí. Ale i s garbage collectorem se
Nim snaží být šetrný. ARC dealokuje paměť průběžně a nemá pauzy, tzv. stop-the-world, jako jiné
garbage collectory.

Silnou stránkou Nimu je jeho systém maker. V Nimu můžete psát makra, která pracují přímo se
syntaktickým stromem (AST) programu. Tím můžete v jazyce definovat nové konstrukce, domé-
nově specifická rozšíření apod., aniž by se měnila syntaxe jazyka (makra v Nim využívají stávající
syntaxi, která je dostatečně flexibilní). To je výhodné třeba pro generování ovladačů z popisu pe-
riferie. Lze si nadefinovat makra, která na vstupu dostanou popis periferie a vygenerují potřebné
konstanty a přístupové funkce.

Nim má moderní typový systém s inferenčními schopnostmi (mnohé proměnné nemusí mít ex-
plicitně uvedený typ, odvodí se), podporuje tuples (n-tice), generika (šablony) i sum types (sjednoce-
né datové typy podobné variantám/algebraickým typům). Například zpracování chyb může Nim
řešit jak výjimkami, tak pomocí sum typů (třeba návratová hodnota může být Result[T, Error]
podobně jako v Rustu).

Nim je velmi dobře kompatibilní s jazyky C/C++. Protože kompiluje do jazyka C, tak je snadné
volat z kódu v Nim libovolnou funkci v C nebo využít existující knihovnu. Typy můžete přebírat
automaticky a volání je bez režie. Můžete přímo zahrnout hlavičkový soubor od výrobce (např.
mapu registrů pro specifickou periferii) a přistupovat k němu z Nim.

V podstatě platí, že jakákoli platforma, která má překladač C, je podporována Nimem. Nim je v tomto
skutečně univerzální. Může generovat kód pro AVR, ARM, ESP32, cokoliv, pokud k tomu exis-
tuje odpovídající překladač C.

—  2  Software

31

Runtime a knihovny

Výsledné spustitelné soubory v Nimu jsou typicky malé a samostatné. Standardní knihovna je
poměrně bohatá (obsahuje například moduly pro datové struktury, formátování textu, síťovou
komunikaci atd.), ale v mikrokontroléru by se použila minimálně nebo vůbec. Základní runtime
Nimu může obsahovat podporu pro garbage collector (pokud je povolený), případně několik po-
mocných rutin (např. pro aritmetiku nad velkými celými čísly, pokud jste ji použili). Lze ho však
výrazně omezit. Vhodnou konfigurací překladače (pomocí konfiguračních souborů .nims) můžete
vypnout generování výpisu zásobníku, odkazů pro ladění atd., a ušetřit další paměť. V extrémním
případě (ARC/žádný GC, vypnutý debug) se velikost programu blíží holému kódu v C, potřebuje
pouze základní věci jako funkce memset/memcpy (a i ty si může případně sám vygenerovat).

Existují projekty, napsané v Nimu pro osmibitový AVR s pouhými 2 kB RAM. Samotné jádro
Nimu v nich zabírá jen jednotky kilobajtů. Pro 32bitové MCU (ARM, ESP32) nejsou zdroje tak
kritické, takže je možné použít i komfortnější správu paměti (ARC). Ta přidá nějaký kód navíc
(např. destruktory a počítadla referencí ke každému alokovanému objektu), ale stále jde o relativně
malou režii v desítkách kB.

Žádné externí závislosti, kromě standardní knihovny céčka (pokud je využita pro volání malloc
atd.) nejsou nutné.

Ekosystém

Nim má aktivní komunitu, ačkoli menší než populárnější jazyky. Distribuován je s vlastním ba-
líčkovacím manažerem Nimble, kde můžete najít množství knihoven od webových frameworků
po utility. Pro vývoj s MCU není zatím moc specializovaných knihoven, ale existují zajímavé
projekty:

•	 Nesper: balíček pro oficiální ESP-IDF (Espressif IoT Development Framework), ve kterém
můžete psát firmware pro ESP32 v Nim a využívat všech funkcí wifi, Bluetooth atd. (viz
projekt elcritch/nesper na GitHubu). Nesper demonstruje silnou stránku Nimu, totiž plnou
kompatibilitu s existujícími API v C. Kód v Nesperu volá funkce knihovny od Espressif bez
jakéhokoli přidaného kódu, jen s trochou syntaktického cukru.

•	 CMSIS/NXP v Nimu: díky snadnému importu hlavičkových souborů z C můžete v Nim
rychle získat definice registrů pro ARM MCU (CMSIS) a pracovat s nimi. Někteří vývojáři
sdíleli .nim soubory vygenerované ze SVD popisů.

•	 Existuje např. i projekt využívající Nim v malé satelitní platformě (CubeSat), kde byl vybrán
díky nabízené kombinaci výkonu a vysoké abstrakci při analýze dat.

Překladač Nimu je velmi rychlý a podporuje i interpretaci NimScriptu. To se využívá při konfi-
guraci. Co se týče IDE, existují pluginy pro VSCode, JetBrains IDE a další, s podporou syntaxe

—  2  Software

32

a základního doplňování. Kód můžete ladit na úrovni vygenerovaného C, tedy ladit výsledný
program pomocí gdb jako běžný program v C (je to málo komfortní, ale možné). Pro běžný vývoj
pro mikrokontroléry se Nim integruje například do PlatformIO.

Ekosystém knihoven pro periferie není v Nimu centralizovaný. Vývojář typicky využije existující
knihovnu v C. Nim se často označuje za „hostovaný jazyk“ (hosted language), to znamená, že
se při některých nízkoúrovňových operacích spoléhá na hostitelský jazyk, typicky céčko. To ale
v kontextu malých zařízení nevadí, spíš to usnadňuje integraci se stávajícími vývojovými balíky
pro jednotlivé platformy.

Celkově je ekosystém Nimu pro vývoj jednočipových aplikací zatím skromný, ale díky kompati-
bilitě s C není třeba vynalézat kolo. Kdokoli, kdo zvládne zkompilovat projekt v C pro daný mi-
krokontrolér, může totéž udělat s projektem v Nimu. Nim je tak pro MCU spíše „toolbox“, který
využívá existující nástroje. Jeho výhodou je, že není omezen architekturou.

Vhodné typy mikrokontrolérových projektů

Nim se hodí pro projekty, kde je požadována vyšší abstrakce a produktivita, než nabízí C, ale sou-
časně je potřeba zachovat relativně nízkou režii a přístup k hardware. Některé scénáře:

•	 Hobby a IoT projekty na výkonnějších MCU: Například ESP32 má desítky až stovky kB
RAM, a to je dostatečné pro běh Nimu s ARC. Nim umožní rychle vyvinout aplikaci (např.
čidlo s web serverem) s mnohem menším množstvím nutného kódu než při psaní v čistém
C/C++. Jako programátor můžete využít vyšší datové struktury, generické funkce, serializaci
JSON apod. bez velkých starostí o paměť, protože ARC se postará o její správné uvolnění.

•	 Prototypování algoritmů: Nim svou syntaxí podobnou Pythonu láká k rychlému psaní algo-
ritmů, které pak běží nativně. Pokud vyvíjíte třeba zpracování signálu nebo řídicí algoritmus
pro ARM Cortex-M4, v Nimu ho napíšete téměř jako pseudokód, ale výsledek poběží s vý-
konem C. Makra umožní vkládat ladicí výstupy, generovat opakující se části atd.

•	 Vestavěné aplikace s komplexní logikou: Stavíte např. datalogger, který komunikuje přes
různé protokoly, ukládá data na SD kartu, reaguje na události. V Nimu můžete takový
firmware strukturovat modulárně (použít objekty pro abstrakce zařízení), využít výjimky pro
chybové stavy atd. Zjednoduší to kód oproti C, kde by se muselo ručně kontrolovat každé
volání funkce (v Nimu lze použít try/except podobně jako v Pythonu, ale s minimální režií).

•	 Multiplatformní logika: Pokud část kódu má běžet i na PC i na MCU (např. nějaká knihov-
na sdílená mezi firmware a simulačním modelem na PC), tak Nim je výborná volba. Stejný
zdrojový kód můžete zkompilovat do JavaScriptu (pro webovou simulaci), do nativní aplikace
i do firmware (přes C). Nemusíte psát výrazně odlišný kód pro různá prostředí.

Omezení tu samozřejmě jsou. Nim není ideální pro úplně nejmenší osmibitové mikrokontroléry
s pár kB paměti, pokud bychom chtěli využívat komfortní funkce (dynamické řetězce, haldy). Sice

—  2  Software

33

se dá i tam nasadit Nim (s přepínačem --gc:none), ale prakticky byste museli psát kód sice v Nimu,
ale „jako v C“, takže by výhoda jazyka zčásti padla. Pro 32bitové MCU s desítkami kB paměti už
ale Nim pohodlně funguje.

Další omezení je menší komunita. Na problém možná nenajdete odpověď tak rychle jako u C či
Arduina. Také nástroje (ladění, trasování) nejsou tak vyspělé. Neexistuje ekvivalent JTAG debug-
geru, který by byl integrovaný přímo s jazykem Nim. Používají se standardní nástroje pro C, ale to
může být někdy nepohodlné kvůli odlišnostem.

Ukázka „Hello World“

Připomeňme si, že Nim můžete spustit i na Arduino UNO (ATmega328P), které má pouhých
2 kB RAM. Kompilátor to zvládne díky možnosti vypnout runtime a přizpůsobit se dané archi-
tektuře. Konfigurační soubor pro překlad může vypadat např. takto:

config.nims – nastavení pro AVR

switch("os", "standalone") # žádný OS

switch("cpu", "avr") # cílová CPU architektura

switch("gc", "none") # žádný garbage collector

switch("stackTrace", "off") # nevkládat stack trace info

switch("lineTrace", "off") # nevkládat debug info o řádcích

switch("passC", "-mmcu=atmega328p") # parametry pro avr-gcc (překlad pro MCU)

switch("passL", "-mmcu=atmega328p") # parametry pro linker

Takto zajistíme, že Nim vygeneruje C kód pro AVR a použije pro kompilaci AVR-GCC. Samot-
ný kód v Nimu pak může přímo manipulovat registry MCU. Např. rozblikání LED na pinu 13
(Arduino UNO) by šlo takto:

const DDRB* = cast[ptr uint8](0x24) # Data Direction Register B (ATmega328P)

const PORTB* = cast[ptr uint8](0x25) # Port B Data Register

proc delay_ms*(ms: int) =

 ## jednoduchá prodleva pomocí smyčky

 for i in 0 ..< ms*1000: discard # (na 16MHz CPU ~ orientační čekání)

Inicializace – nastav PB5 (arduino pin13) jako výstup

DDRB[] = DDRB[] or 0b0010_0000

while true:

 PORTB[] = PORTB[] xor 0b0010_0000 # přepni bit LED

 delay_ms(500)

—  2  Software

34

Výše uvedený kód je ilustrační. Ukazuje přístup k paměťovým adresám (pomocí cast[ptr uint8])
a nekonečnou smyčku blikání. Přeložený program můžete nahrát do Arduina standardním po-
stupem (např. pomocí avr-objcopy převést na .hex a nahrát pomocí avrdude). Je tu hezky vidět, že
Nim je syntakticky mnohem stručnější než ekvivalent v C (není třeba psát datové typy u literálů,
cyklus lze udělat pythonovským zápisem atd.), a přitom výsledek po překladu je velmi podobný
strojovému kódu.

Dostupná literatura a online zdroje

•	 Oficiální příručka Nim: dokumentace na nim-lang.org obsahuje manuál popisující jazyk
a standardní knihovnu. Pro vývoj elektroniky jsou důležité hlavně kapitoly o správě paměti
a integraci s C.

•	 Kniha „Nim in Action“ (Dominik Picheta, Manning 2017): úvod do jazyka a praktické pro-
jekty. I když není zaměřena přímo na MCU, tak pokrývá podrobně volání kódu v C a výko-
nové aspekty.

•	 Nim community forum (forum.nim-lang.org): aktivní fórum, kde najdete vlákna o použití
Nim na ESP32, Arduino a dalších. Často tam přispívají samotní tvůrci jazyka.

•	 Článek „nim for embedded software development“ (na Dev.to): zkušenosti vývojáře s pou-
žitím Nim pro MCU, včetně ukázky nastavení pro AVR.

•	 Repozitář Awesome Nim: komunitní seznam knihoven a projektů (GitHub
nim-lang/awesome-nim), který zmiňuje i využití Nimu pro elektroniku.

2.1.2 Forth

Forth je nestárnoucí klasika mezi programovacími jazyky pro systémy s malými procesory. Jde
o zásobníkově orientovaný jazyk a zároveň jednoduché interaktivní vývojové prostředí, který navrhl
v 60. letech Chuck Moore a který byl hojně využíván v 70. až 90. letech v průmyslových vesta-
věných aplikacích. Paradigma Forthu je ojedinělé: je to konkatenativní (skládající) jazyk, kde se
program skládá z posloupnosti slov (tokenů), které operují nad společným datovým zásobníkem.
Forth nezná klasické proměnné a datové typy v běžném smyslu (vše jsou jen čísla na zásobníku),
nemá syntaktická omezení (řídicí struktury používají speciální slova). Můžeme ho označit za pro-
cedurální jazyk bez kontroly typů (přesto se dá ve Forthu definovat např. oddělený zásobník pro
desetinná čísla atd., ale to je implementační detail).

Důležitou vlastností je, že Forth typicky běží s interaktivním interpretem, je tedy zároveň vývo-
jovým prostředím (IDE), kde uživatel může za běhu systému zadávat příkazy, zkoušet funkce atd.

Forth je výrazně odlišný od mainstreamových jazyků. Je postaven na RPN (obrácená polská no-
tace, reverse polish notation), kde se zapisují nejprve operandy, a za ně operace. Všechny operace

http://nim-lang.org

—  2  Software

35

berou parametry ze zásobníku a výsledek ukládají zpět. Např. součet 2 a 3 se zapíše jako 2 3 +
(kde „plus“ je slovo, které vezme dvě čísla ze zásobníku, sečte a výsledek uloží opět na zásobník).

Ve Forthu neexistuje syntaktický rozdíl mezi „jazykem“ a „vestavěnými funkcemi“, protože celé
prostředí Forthu je definováno souborem slov (včetně řídicích struktur jako IF..ELSE..THEN, smy-
ček DO..LOOP atd.). Uživatel může za běhu definovat nová slova (vlastní funkce), a ta se okamžitě
stávají součástí jazyka. Forth je tedy extrémně flexibilní a rozšiřitelný; zkušený programátor si
může přizpůsobit celé prostředí podle potřeby. Z jiných jazyků má blízko snad jen k PostScriptu
(který je také zásobníkový) nebo modernějším jazykům jako Factor, ale v mnoha ohledech je
Forth skutečně unikátní.

Hlavní rysy jazyka

•	 Interaktivnost: Forth typicky běží na cílovém zařízení jako interpret, ke kterému je možné
se připojit (např. přes sériovou linku) a zadávat příkazy. Okamžitě po zadání příkazu je vidět
výsledek. To urychluje vývoj a ladění; nepotřebujete plný debugger, stačí konzole. Proto se
Forth používá často i jako zabudovaný monitor v průmyslových zařízeních.

•	 Kompilace a interpretace: Forth používá tzv. threaded code, kde se nové slovo (funkce) kom-
piluje jako sekvence volání jiných slov. Kompilace je velmi rychlá a probíhá přímo na zařízení
(tzv. self-hosted). Z pohledu uživatele se střídají dva režimy: interpretation state (příkazy se
ihned vykonávají) a compile state (příkazy se místo vykonání kompilují do definice nového slo-
va). Přepnutí do compile state nastane po zadání slova : (dvojtečka, tedy začátek definice slova)
a zpět do interpretace se přejde po ; (středník, konec definice). Tato dualita dává Forthu
schopnost definovat slova za běhu a hned je volat.

•	 Extrémní efektivita a nízké nároky: Implementace Forthu jsou velmi malé. Jednoduché jád-
ro Forthu (interpreter + kompilátor + základní slovník) se vejde do několika kilobajtů paměti.
Například AmForth pro mikrokontroléry AVR8 potřebuje jen ~8–12 KB flash a ~200 bajtů
RAM pro běh základního systému. Na druhou stranu Forth nemá komfortní automatickou
správu paměti, vše musíte udělat ručně (ale v malých MCU to nevadí, tam paměťovou haldu
často nepotřebujete vůbec).

•	 Jednoduchost běhového prostředí: Klasický Forth nepotřebuje žádný operační systém ani
volání služeb. Může běžet přímo od resetu MCU jako holý firmware. Implementuje si čas-
to i vlastní miniaturní operační systém (např. jednoduchý plánovač úloh, souborový systém
v paměti atd.) Mnohé implementace Forthu také podporují multitasking (kooperativní nebo
preemptivní) uvnitř sebe sama, i bez podpory ze strany OS. To znamená, že jediné, co musíte
na MCU zajistit, je nastavení ukazatele zásobníku a skok na start Forth VM.

•	 Přenositelnost a standardizace: Forth byl formalizován v ANSI standardu (ANS Forth
1994, později Forth 200x). Díky tomu existuje množství implementací, které jsou do velké
míry kompatibilní. Programy napsané v mezích standardu půjde zprovoznit na různých sys-
témech s minimem úprav. Pro MCU se ale často používají podstandardní implementace (např.
minimální jádro bez některých složitých slov kvůli úspoře paměti).

Líbila se Vám ukázka
z knihy? Knihu
můžete zakoupit na
HWKITCHEN.cz

https://www.hwkitchen.cz/kity-bity-neurony-moderni-technologie-pro-hobby-elektroniku-martin-maly/

	Předmluva vydavatele
	Poděkování
	Předmluva
	1 Chvála bastlení
	2 Software
	2.1 Mikrokontroléry nejsou jen C/C++ a Python

	Prázdná stránka

