Martin Maly

Kity, bity,
neurony

Moderni technologie
pro hobby elektroniku

Edice CZ.NIC

KITY, BITY, NEURONY

Martin Maly

Vydavatel:

CZ.NIC, z.s. p. o.
Milesovsks 5,130 00 Praha 3
Edice CZ.NIC

WWW.nic.cz

1. vydani, Praha 2025
Kniha vysla jako 35. publikace v Edici CZ.NIC.
ISBN 978-80-88168-85-0

© 2025 Martin Maly

Toto autorské dilo podléhd licenci Creative Commons BY-ND 4.0
(https://creativecommons.org/licenses/by-nd/4.0/). Dilo véak muzZe byt pfekladdno a nisledné
$ifeno v pisemné & elektronické formé, na uzemi kteréhokoliv stitu, za pfedpokladu, Ze nedojde
ke zméné dila a i nadile zlistane zachovdno oznaceni autora a prvniho vydavatele dila, sdruZeni

CZ.NIC, z. s. p. 0. Preklad muze byt $ifen pod licenci CC BY-ND 4.0.

na vznik dal3ich? Darujte libovolnou &astku na

Tato kniha vysla v Edici CZ.NIC. Chcete pFispét E E
dar.nic.cz/kniha-kity :

Edice CZ.NIC je jednou z osvétovych aktivit sdruzeni CZ.NIC, E
spravce &eské narodni domény.

CZNIC [

http://www.nic.cz
https://creativecommons.org/licenses/by-nd/4.0/

ISBN 978-80-88168-85-0

Kity, Bity, Neurony

Predmluva vydavatele

— Predmluva vydavatele

Pfedmluva vydavatele
Milé étendiko, mily ¢tendii,

Vimi otvirand kniha, nazvand Kity, bity, neurony, pfedstavuje jiz Sestou publikaci Martina Malého
vydavanou v Edici CZ.NIC. Autor se tentokrit zamysli nad dynamickym vyvojem v celém ,oboru
bastleni“ — domaciho kutilstvi. A¢koliv se podle autora néktefi ¢tenafi diive dozadovali navratu
k tranzistorim, kniha se misto nostalgie soustfedi na to, co se ve svété hobby elektroniky objevilo
relativné neddvno.

Cilem autora bylo ukdzat nové moznosti domaciho kutilstvi, pfedstavit zajimavé oblasti a byt
uzite¢nym pravodcem v domacim bastleni zvlastnimu druhu ¢lovéka kutilu elektrotechnickému.
Martin Maly se v knize postupné vénuje v jednotlivych kapitoldch softwaru a hardwaru, modu-
lam, praktickym aplikacim a v neposledni fadé umélé inteligenci a neuronovym sitim. Jako bonus
si étendf muzZe postavit tieba bezdotykovou lampicku ovlddanou gesty.

Kniha vzdéva hold domécimu kutilstvi, které autor rehabilituje jako uméni vytvofit néco vlast-
nima rukama, s maximem kreativity a radosti z objevovdni. Bastleni je totiZ nutné vnimat ne
jako zpusob jak ziskat hotové bezchybné feseni, ale jako kreativni proces uéeni a radosti z feseni
problémi. A pravé radost z tvofeni a touha porozumét v§udypfitomnym technologiim pfedsta-
vuji zdkladni vlastnosti kutilského ¢lovécenstvi. Pfejeme vim pfijemné ¢teni a neutuchajici touhu
stavét, objevovat a Zit.

Jaromir Novik, CZ.NIC
Praha, 25. listopadu 2025

Podékovani

— Podékovani

Podékovani

Kdyz jsem psal podékovini do své prvni knihy, netusil jsem, Ze jednou budu psit podékovini do
knihy Sesté. Ale stalo se to, a to pfedev§im diky mnoha skvélym lidem.

V prvni fadé dékuji lidem, ktefi tuto knihu v Edici CZ.NIC pfipravili. Jmenovité pak pani
Katefiné Slavikové, bez nizZ by tyto knihy ani nevznikaly. Na pocitku je vzdycky jeji telefondt

s nendpadnou otdzkou ,,...a nechcete zase néco napsat? Nedokdzu odmitnout!

Dékuji lidem, ktefi bastleni povazuji za radost, ne za vysadu, a ktefi mi pomohli radou, tipem,
niamétem, nebo jen svym pozitivnim piikladem. Pro mé jsou dusi ¢eského bastleni. Za vSechny
jmenuji Michala Sev¢ika, Petra Sramka, Martina Kiklhorna, Juraje Michdlka, Konstantina Lasku,
Oldficha Horacka, Martina Wolkera, Martina Kocourka, ale kdybych chtél byt spravedlivy, tak
bych musel jmenovat vSechny ty lidi, co zndm z Twitteru (nyni X) jen pfezdivkami a podle jejich

profilovych fotografii.
[jplné nejvic pak dékuji vim viem, ktefi moje knihy Ctete a kupujete. Vzdycky mé potési, kdyz se
ke mné nékdo hldsi a fikd: ,J€, ja Cetl vasi knizku!“ — a co teprve kdyz je z oboru, kde bych to moc

necekal. Diky za tahle mild potéSeni!

Specidlni podékovéni za toleranci a trpélivost patfi moji partnerce Lence.

Diky!

13

Predmluva

— Ptedmluva

Pfedmluva

Napsal jsem pét knih o elektronice. Kdyz jsem dopsal prvni, védél jsem, Ze bude mit pokradovani
o mikroprocesorech a stavbé vlastnich pocitaci. Kdyz jsem psal druhou, védél jsem, Ze bude mu-
set byt tfeti, o FPGA. A pak jsem myslel, Ze uz jsem napsal viechno, co jsem chtél o elektronice
napsat...

Jenze diky vim, étendftim, vzniklo i specidlni ,8kolni“ pojednédni o Micro:bitu, a kdyzZ jsem ho do-

pisoval, pfisly nové modely ESP32, spousta konstrukci, a bylo jasno: dalsi kniha musi byt o ESP32!

I po paté knize jsem si Fikal, Ze uz asi nebudu mit o em psit, ale obor jde rychle dopfedu. Nemys-
lim elektroniku, tam je to nepochybné; myslim ,obor bastleni“, doméciho elektronického kutilstvi.
Kdyz se mi opét ozval vydavatel s tim, jestli nechci napsat dalsi knihu, tak jsem se zamyslel: o ¢em

by méla byt?

Neéktefi navrhovali vrétit se k tranzistorim. Jini navrhovali ridio. Oboji jsou zajimavé oblasti.
Ano, uzndvim, Ze ,bastleni“ s tranzistory md svoje kouzlo, i kdyz leckdy nostalgické: viiné palené
kalafuny, olovénd pachut na jazyku, tranzistory s dlouhymi nozi¢kami rozkrocené nad zméti drit-
ka, v lepsim pfipadé nad deskou plosnych spoji, méfeni, nastavovani pracovniho bodu zesilovace,
vinuti civek (,vifite 624 zavitd vodicem 0,1 mm a kazdou vrstvu prolozte papirem. U zdvitu 218
udélejte odbocku. Na civku navirite 12,5 zévitu lakovanym vodi¢em 1 mm® — pamatujete?) a ozi-
vovini toho vicho... Tranzistory mi voni zazloutlymi listy knih, které jsem etl a miloval jako
kluk, ale svét se za téch skoro padesit let posunul. KdyZ dnes postavite radio tak, jak se stavélo
ytenkrdt, moc toho k poslouchéni nechytite. Vétsina vysildni je uz FM nebo DAB+ a to je uz
daleko za ,tranzistorovym“ obzorem. Samozfejmé si miZete postavit pfijima¢ s FM i DAB, kde
bude anténa, trocha biZuterie a jeden integrovany obvod, co se o vSechno stard, ale zas tam chybi
ta tranzistorovd romantika.

Nakonec jsem si fikal, Ze tranzistory jsou ,nyni jiZ nestirnouci“ a vratit se k nim mohu kdykoli.
A kdyz jsem se rozhlizel, co se ve svété hobby elektroniky déje, tak mi doslo, Ze se musim trosku
vratit ke konceptu prvni trilogie: zdkladni principy, ukdzky zapojeni, rizné moznosti, novinky,

techniky.

Tato kniha je vénovani vécem, které se objevily v bastlifském svété relativné neddvno. Rozdélil
J jevily
jsem ji do étyf hlavnich &asti: software, hardware, moduly a Al, respektive neuronové sité.

V oblasti software se objevuji nové jazyky, které v nékterych situacich nabouravaji téméf absolutni
dominanci C/C++. Kromé Pythonu a jeho variant pro MCU jde tieba o skriptovaci jazyk Lua,
ktery se hodi pro psani riznych plugini a uzivatelskych kédd, nebo o ,,bare metal® verzi Rustu, coz
je jazyk s velmi pomalou ugici kfivkou, ale na konci jste odménéni velmi bezpeénymi programy,
protoze vés uz samotny pieklada¢ chrani od konstrukci, ve kterych by mohlo dochézet k problé-

17

— Ptedmluva

mum. Zafadil jsem i novy jazyk Zig, ktery je zajimavou alternativou k C a zaroveil s nim dokaze

skvéle koexistovat. Popi§eme si i principy LLVM, ktery se stal zakladem mnoha piekladacu.

Hardwarovi ¢ast obsahuje seznameni s Raspberry Pi Pico 2, s velmi levnym MCU CH32V003, se
zajimavym dudlnim Milk-V Duo, a pfidal jsem i novou generaci ESP32. Kdyz se na tyto obvody
podivite s odstupem, uvidite, Ze je jedna véc spojuje, a to je architektura RISC-V. Tato moduldrni
architektura, odvozend ze zndmé architektury MIPS, je open-source, takze ji vyrobci ipti mohou
pouzivat ve svych zafizenich bez nutnosti platit licenéni poplatky. To spolu s bohatymi moZnostmi
pizpusobeni z ni déld zajimavou a perspektivni alternativu napiiklad k ARM. Proto jsem velkou
¢ast vénoval popisu této architektury.

Ve tieti ¢asti se budu vénovat praktickym vécem, u kterych jsem si fikal, Ze by mély zaznit. Napfi-
klad jak ve vlastnich konstrukcich vyfesit napajeni pres stile populdrnéjsi USB-C, jaké zvolit ¢idlo
a jaké jsou mozZnosti, a popisu nékterych projekti, které jsou zajimavé i jako inspirace k vlastni
tvorbé.

A posledni ¢dst knihy vénuji neuronovym sitim. Je bez debat, Ze tato technologie bude v dalsich
letech téméf viude, a diky rozvoji elektroniky bude stéle Castéji dostupnd i pro doméci hobby pro-
jekty. Minoho €ipi uz dnes nabizi rizné ,Al akcelerdtory” a koprocesory, proto jsem zafadil tuto
sekei. PopiSeme si zdkladni principy neuronovych siti (perceptron, vicevrstvé sité, backpropagati-
on, ueni), jejich pouziti v mikrokontrolérovych zafizenich (kvantizace sité€ pro malé procesory),
pouzivané knihovny a piiklad toho, jak spustit na malém jedno¢ipu vlastni neuronovou sit.

Dlouhé zdrojové kidy k prikladiim a uZitecné odkazy najdete na https://kbn.elektroniche.cz

18

https://kbn.elektroniche.cz

Obsah

— Obsah

Pfedmluva vydavatele
Podékovani
Pfedmluva

1 Chvala bastleni

2 Software

2.1 Mikrokontroléry nejsou jen C/C++ a Python
2.2 Lua: skriptovani pro mikrokontroléry

2.3 Prekladace pro RISC-V

24 LLVM

2.5 Intermezzo: 1925-1950 - Elektronkové éra

3 Hardware

3.1 Raspberry Pi Pico 2 a mikrokontrolér RP2350
3.2 CH32Vv003

3.3 ESP32 nové generace

3.4 Milk-V Duo

4 RISC-V

4.1 Standardni rozsifeni RISC-V

4.2 Hlavni rozdily procesort RISC-V oproti procesoriim ARM
4.3 Implementace RISC-V

4.4 Vlyvojaiské nastroje

4.5 Koncepce instrukéniho soubor RISC-V

4.6 Instrukce RISC-V

4.7 Prehled instrukci RV32I

4.8 Priklady kodu

4.9 Architektura Hazard3

4.10 Intermezzo: 1950-1975 - Tranzistorova revoluce

5 Projekty a moduly

5.1 USB-C pro bastlife

5.2 Zakladni senzory

5.3 Dalsi snimace

5.4 Projekt: Bezdotykové lampicka ovladana gesty

5.5 Neviditelny vratny: mikrovinny senzor HW-MS03
+ Raspberry Pi Pico 2 (RP2350 RISC-V)

5.6 Matter/Thread v praxi

5.7 Intermezzo: 1975-2000 - DigitaIni vék

11

15

23

27
27
48
102
111
120

125
125
138
160
163

181
182
183
183
184
185
187
209
211
212
215

219
219
225
238
245

256

265
278

21

— Obsah

6 Uméla inteligence

6.1 Zaklady strojového uceni

6.2 Rozpoznavani gest pomoci ESP32 a TinyML
6.3 Intermezzo: 2000-2025 - Modularni svét

7 Dodatky

7.1 Milk-V Duo S

7.2 Milk-V Duo 256M

7.3 Clustery v protokolu Matter

8 Doslov

22

283
283
347
357

361
361
366
368

379

1 Chvala bastleni

— 1 Chvila bastleni

1 Chvala bastleni

V této knize vzddvim hold domécimu kutilstvi, zaméfenému na elektroniku. Rukopis dokonéuji
na podzim roku 2025, a fikdm si, Ze je to docela dobra pfilezitost podivat se na ,poslednich sto
let s elektronikou o¢ima domadcich kutild. I proto jednotlivé ¢sti knihy oddéluji historicka inter-
mezza, popisujici jednotlivd Ctvrtstoleti, nejprve s elektronkami, pak s tranzistory, poté s integro-
vanymi obvody, dnes s jedno¢ipovymi mikrokontroléry.

Pro podobné ¢innosti se vZilo oznaleni ,bastleni®, které je trochu pejorativni, ale ja bych ho rad
alespori pro tuto knihu rehabilitoval.

» 10 je ale zbastlené,” fikdvali starsi a kroutili hlavou nad polickou, kterd se mirné naklanéla dole-
va. V jejich hlase bylo znat zklaméni a slovo ,zbastlit znélo z jejich ust jako obzaloba. Jako kdyz
fekneme, Ze je néco odfliknuté, nedodélané, provizorni. V bézné fedi se bastleni stalo synonymem
pro provizorni fe$eni, hala bala, nakfivo, polorozpadlé, podepfené kusem kartonu a zafixované
izolepou.

Jenze pak je tu jesté jiné bastleni. To, které znamend pravy opak. Bastleni jako uméni vytvofit néco
vlastnima rukama, s minimem prostfedkd, ale s maximem kreativity. Bastleni jako proces objevo-
vani, ueni se a radosti z tvofeni.

Kazdy bastlif to znd, ten moment, kdy se v gardzi nebo u pracovniho stolu rodi néco nového. Neni
to proto, Ze by to nutné potieboval. Neni to proto, Ze by si to nemohl koupit hotové. Je to proto,
ze chcee pochopit, jak véci funguji. Chee jim dét néco ze sebe. A pfedeviim si chee uzit tvorbu.

Bastleni je jako jazz. Muzete poslouchat dokonale nahranou studiovou skladbu, nebo se mtizete
posadit k pianinu a zacit experimentovat. Bude to zpoc&itku skfipat, nékteré tény nebudou sedét,
ale bude to vage. A Casem, s kazdym dal§im pokusem, s kazdou dalsi hodinou stravenou uéenim
a zkousenim, se za¢ne rodit néco jedine¢ného.

V dobg, kdy mame vSechno na dosah ruky, kdy staci nékolik kliknuti k objednéni prakticky ¢eho-
koliv, mizZe bastleni piisobit jako pfezitek. Pro¢ travit hodiny stavbou vlastniho teploméru, kdyz
si miZeme koupit profesiondlni meteostanici? Pro¢ pajet vlastni zesilovag, kdyz jsou k dispozici
$pickové audio systémy? Pro¢ programovat vlastni domdci automatizaci, kdyz existuji hotovi fe-
Seni?

Odpovéd je jednoduchd: Protoze bastleni neni zpisob, jak mit systém pro automatizaci, meteo-
stanici nebo osvétleni. Podstatny je proces, ta zvlastni magie, kterd se déje, kdyZ vezmete do ruky
pajku, kdyz poprvé pfipojite novy senzor, kdyz vas vlastnoruéné napsany program koneéné udéla
presné to, co jste chtéli. Nebo kdyZz néco nefunguje a vy musite pfijit na to proc¢. Bastleni je radost
z feSeni problémii a uspokojeni z pfekondvani pfekazek.

25

— 1 Chvala bastleni

Bastleni je také komunitni véc. Spojuje lidi, ktef{ si navzajem pomdhaji, sdileji své zkusenosti, radi
se a inspiruji se. Bastleni jsou i veCery strdvené na internetu hledanim feseni zdanlivé nefesitelné-
ho problému, ale i nadseni, kdyZ kone¢né najdete nékoho, kdo fesil néco podobného. Je to sdilena
radost z uspéchu i spole¢ném uceni se z netspéchi.

V dobg, kdy se véci stavaji stale vice uzavienymi a nepfistupnymi béznému ¢lovéku, kdy jsou nase
zafizeni Cernymi skfitfikami, do kterych nemtzZeme nahlédnout, je bastleni aktem svobody. Je to
zpusob, jak si zachovat kontrolu nad technologiemi, které nds obklopuji. Jak jim porozumét, jak je
pfizpusobit nasim potfebam, jak je uéinit opravdu nasimi.

Takze az pfisté nékdo fekne, Ze néco je ,zbastlené”, mozna je Cas se zamyslet. Moznd je Cas pfipo-
menout, Ze bastleni je ve skute¢nosti projevem té nejvyssi péce a lisky k femeslu. Je to zpiisob, jak
vécem vdechnout dudi, jak jim déit pfibéh. A pfedevsim je to zpiisob, jak zistat zvidavymi détmi
v téle dospélych, jak si zachovat radost z objevovani a tvofeni.

Protoze bastleni neni jen sestavovani elektroniky. Je to svoboda tvofit, odvaha experimentovat
a radost z pozndvani. Bastleni v nds otevird to nejlepsi, co v nds je: tvofivost, zvidavost a nekonec-

nou touhu udit se nové véci.

A mozna pravé proto si zaslouzi, abychom ho psali s velkym B.

26

2 Software

— 2 Software

2 Software

2.1 Mikrokontroléry nejsou jen C/C++ a Python

Embedded vyvoji (programovéni vestavénych systému) tradi¢né dominuje jazyk C/C++. Je z po-
vahy nizkodrovilovy a ma malou rezii. V soucasnosti viak existuji i modernéjsi alternativy zamé-
fené na vyssi spolehlivost, produktivitu ¢i lep$i spravu paméti, které miiZete pouzit na platforméch
jako Arduino (AVR), ESP32 (Xtensa/RISC-V), RP2040 (ARM Cortex-M0+) nebo RP2350.
Predstavime si dva takové jazyky, Nim a FORTH, z pohledu jejich soucasného vyuziti v takovych

zafizenich.

V dalsich kapitolich si podrobnéji probereme jazyky Lua a Zig. Jeden z nich je vhodny pro ap-
likace, kde chceme ddt moznost uzivatelim psét vlastni bezpecné skripty a providét je pfimo na
zafizeni, druhy je zajimavou alternativou k C, ktera pfidava nové vlastnosti, ale nerozbiji kompa-
tibilitu.

Taky se budeme vénovat toolchainim, tedy fetézcim néstroji, které jsou spolu provizané a zpra-
vidla jeden néstroj pouzivd vystup druhého. Typicky jde o fetézec s navazujicimi komponentami:
pieklada¢ do nizsiho jazyka — piekladal do objektového kédu — spojovaci program (linker).
I kdyz se volaji tfeba jednim pfikazem, tak tam stile nékde v pozadi je spousta néstroji...

2.1.1 Nim

Nim (dfive Nimrod) je vy3§i programovaci jazyk, ktery pfinasi do systémového programovani
syntaktickou lehkost podobnou Pythonu, ale kompiluje se do efektivniho nativniho kédu (pies
C/C++, nebo piimo). Oficidlné je prezentovan jako ,staticky typovany kompilovany systémovy pro-
gramovaci jazyk ", ktery kombinuje osvédeené koncepty z Pythonu, Ady a Moduly-2. Je to jazyk
multiparadigmaticky: podporuje imperativni strukturovany styl, funkcionalni prvky (vyssi funkce,
lambda vyrazy), objektové orientované programovéni (dédic¢nost, metody) i metaprogramovani
pomoci maker.

Nim je navrzen s ohledem na ¢itelnost a expresivitu kédu: syntaxi md podobnou Pythonu (vyraz-
ny rys je napf. odsazovaci blokovd struktura misto slozenych zévorek), ale zdroven nabizi nizko-
troviiové konstrukce (napf. ukazatele, bitovou aritmetiku), potfebné pro systémové programovani.
Diky této kombinaci je Nim nékdy oznacovin za jazyk, ktery propojuje skriptovaci jazyky a vy-

konné kompilované jazyky.

29

— 2 Software

Hlavni rysy jazyka

Nim klade diraz na efektivitu kédu a flexibilni spravu paméti. Vychozi implementace pfeklada
Nim do jazyka C/C++ (ptipadné do Javascriptu pro web), jednd se tedy o transpiler. Zkompilo-
vané programy nevyzaduji Zadny virtudlni stroj ani runtime prostfedi nebo knihovny. Vysledkem
je nativni samostatny spustitelny soubor.

Nim nabizi nékolik rezimu spravy paméti. Tradi¢né pouzival garbage collector (nepfetrzity bého-
vy GC, podobné jako Go nebo Java), oviem novéjsi verze zavedly deterministickou spravu paméti
pomoci destruktord a pfemistovaci sémantiky, inspirovanou C++ a Rustem. To znamen4, Ze v mo-
dernim Nimu (od verze 1.4) muzete vyuzit tzv. ARC (automatic reference counting) nebo ORC, tj.
automatické po&itini referenci na objekt s pfedvidatelnym uvoliiovanim objekta ve chvili, kdy uz
na né neexistuje Zadny odkaz. Pro MCU je to zédsadni, protoze Nim umi pracovat zcela bez garb-
age collectoru. Sta¢i pfepnout rezim (--gc:arc nebo --gc:none pfi kompilaci). V rezimu --gc:none
je odpovédnost za uvoliiovani paméti plné na programétorovi (podobné jako v C), nicméné diky
tomu muzete vyuzit Nim i v systémech s extrémné malou paméti. Ale i s garbage collectorem se
Nim snazi byt setrny. ARC dealokuje pamét priibéZné a nema pauzy, tzv. stop-the-world, jako jiné
garbage collectory.

Silnou strankou Nimu je jeho systém maker. V Nimu muzZete psit makra, ktera pracuji p¥imo se
syntaktickym stromem (AST) programu. Tim muzZete v jazyce definovat nové konstrukce, domé-
nové specifickd rozsifeni apod., aniz by se ménila syntaxe jazyka (makra v Nim vyuzivaji stdvajici
syntaxi, ktera je dostate¢né flexibilni). To je vyhodné tfeba pro generovéni ovladaci z popisu pe-
riferie. Lze si nadefinovat makra, kterd na vstupu dostanou popis periferie a vygeneruji potfebné
konstanty a pfistupové funkce.

Nim m4 modern{ typovy systém s inferenénimi schopnostmi (mnohé proménné nemusi mit ex-
plicitné uvedeny typ, odvodi se), podporuje zuples (n-tice), generika (Sablony) i sum types (sjednoce-
né datové typy podobné variantim/algebraickym typum). Napfiklad zpracovini chyb mize Nim
fesit jak vyjimkami, tak pomoci sum typd (tfeba névratovd hodnota miize byt Result[T, Error]

podobné jako v Rustu).

Nim je velmi dobfe kompatibilni s jazyky C/C++. Protoze kompiluje do jazyka C, tak je snadné
volat z kédu v Nim libovolnou funkci v C nebo vyuzit existujici knihovnu. Typy muzete pfebirat
automaticky a voldni je bez rezie. Miizete pfimo zahrnout hlavickovy soubor od vyrobce (napf.
mapu registril pro specifickou periferii) a pfistupovat k nému z Nim.

V podstaté plati, ze jakdkoli platforma, kierd md piekladac C, je podporovina Nimem.Nim je v tomto

skute¢né univerzdlni. Mize generovat kéd pro AVR, ARM, ESP32, cokoliv, pokud k tomu exis-
tuje odpovidajici pieklada¢ C.

30

— 2 Software

Runtime a knihovny

Vysledné spustitelné soubory v Nimu jsou typicky malé a samostatné. Standardni knihovna je
pomérné bohatd (obsahuje napifklad moduly pro datové struktury, formatovéni textu, sitovou
komunikaci atd.), ale v mikrokontroléru by se pouzila minimélné nebo vibec. Zakladni runtime
Nimu mize obsahovat podporu pro garbage collector (pokud je povoleny), piipadné nékolik po-
mocnych rutin (napf. pro aritmetiku nad velkymi celymi &isly, pokud jste ji pouzili). Lze ho viak
vyrazné omezit. Vhodnou konfiguraci piekladace (pomoci konfiguraénich soubori .nims) mizete
vypnout generovéni vypisu zdsobniku, odkazi pro ladéni atd., a usetfit dal$i pamét. V extrémnim
ptipadé (ARC/zadny GC, vypnuty debug) se velikost programu blizi holému kédu v C, potiebuje

pouze zdkladni véci jako funkce memset/memcpy (a i ty si mize pfipadné sim vygenerovat).

Existuji projekty, napsané v Nimu pro osmibitovy AVR s pouhymi 2 kB RAM. Samotné jadro
Nimu v nich zabird jen jednotky kilobajtd. Pro 32bitové MCU (ARM, ESP32) nejsou zdroje tak
kritické, takZe je mozné pouzit i komfortnéjsi spravu paméti (ARC). Ta pfida né&jaky kéd navic
(napt. destruktory a pocitadla referenci ke kazdému alokovanému objektu), ale stale jde o relativné
malou rezii v desitkdch kB.

Z4dné externi zavislosti, kromé standardni knihovny cécka (pokud je vyuzita pro voldni malloc
atd.) nejsou nutné.

Ekosystém

lickovacim manazerem Nimble, kde mizZete najit mnozstvi knihoven od webovych frameworki
po utility. Pro vyvoj s MCU neni zatim moc specializovanych knihoven, ale existuji zajimavé

projekty:

* Nesper: bali¢ek pro oficidlni ESP-IDF (Espressif loT Development Framework), ve kterém
muzete psit firmware pro ESP32 v Nim a vyuzivat vech funkei wifi, Bluetooth atd. (viz
projekt elcritch/nesper na GitHubu). Nesper demonstruje silnou strdanku Nimu, totiz plnou
kompatibilitu s existujicimi API v C. Kéd v Nesperu vold funkce knihovny od Espressif bez
jakéhokoli pfidaného kédu, jen s trochou syntaktického cukru.

* CMSIS/NXP v Nimu: diky snadnému importu hlavickovych soubort z C mizete v Nim
rychle ziskat definice registri pro ARM MCU (CMSIS) a pracovat s nimi. Néktef{ vyvojafi
sdileli .nim soubory vygenerované ze SVD popist.

* Existuje napt. i projekt vyuzivajici Nim v malé satelitni platformé (CubeSat), kde byl vybrin
diky nabizené kombinaci vykonu a vysoké abstrakei pii analyze dat.

Preklada¢ Nimu je velmi rychly a podporuje i interpretaci NimScriptu. To se vyuziva pii konfi-
guraci. Co se ty¢e IDE, existuji pluginy pro VSCode, JetBrains IDE a dalsi, s podporou syntaxe

31

— 2 Software

a zékladniho dopliiovini. Kéd miizete ladit na drovni vygenerovaného C, tedy ladit vysledny
program pomoci gdb jako bézny program v C (je to milo komfortni, ale mozné). Pro bézny vyvoj

pro mikrokontroléry se Nim integruje napfiklad do PlatformIO.

Ekosystém knihoven pro periferie neni v Nimu centralizovany. Vyvojaf typicky vyuZije existujici
knihovnu v C. Nim se Casto oznaluje za ,hostovany jazyk“ (hosted language), to znamend, Ze
se pfi nékterych nizkouroviiovych operacich spoléhd na hostitelsky jazyk, typicky cécko. To ale
v kontextu malych zafizeni nevadi, spi§ to usnadiiuje integraci se stévajicimi vyvojovymi baliky
pro jednotlivé platformy.

Celkové je ekosystém Nimu pro vyvoj jednocipovych aplikaci zatim skromny, ale diky kompati-
bilité s C neni tfeba vynalézat kolo. Kdokoli, kdo zvlddne zkompilovat projekt v C pro dany mi-
krokontrolér, miZe totéZ udélat s projektem v Nimu. Nim je tak pro MCU spise , toolbox*, ktery
vyuziva existujici nastroje. Jeho vyhodou je, Ze neni omezen architekturou.

Vhodné typy mikrokontrolérovych projektu

Nim se hodi pro projekty, kde je pozadovana vyssi abstrakce a produktivita, nez nabizi C, ale sou-
Casné je potfeba zachovat relativné nizkou rezii a pfistup k hardware. Nékteré scéndfe:

* Hobby a IoT projekty na vykonnéjsich MCU: Napiiklad ESP32 md desitky az stovky kB
RAM, a to je dostatené pro béh Nimu s ARC. Nim umozni rychle vyvinout aplikaci (napf.
¢idlo s web serverem) s mnohem men$im mnozstvim nutného kédu nez pii psani v Cistém
C/C++. Jako programitor mizZete vyuzit vyssi datové struktury, generické funkce, serializaci
JSON apod. bez velkych starosti o pamét, protoze ARC se postari o jeji spravné uvolnéni.

* Prototypovani algoritmii: Nim svou syntaxi podobnou Pythonu lika k rychlému psani algo-
ritmd, které pak bézi nativné. Pokud vyvijite tfeba zpracovani signdlu nebo fidici algoritmus
pro ARM Cortex-M4, v Nimu ho napisete téméf jako pseudokdd, ale vysledek pobézi s vy-
konem C. Makra umozni vkladat ladici vystupy, generovat opakujici se &asti atd.

* Vestavéné aplikace s komplexni logikou: Stavite napf. datalogger, ktery komunikuje pfes
rizné protokoly, uklddd data na SD kartu, reaguje na uddlosti. V Nimu muzete takovy
firmware strukturovat moduldrné (pouzit objekty pro abstrakce zafizeni), vyuzit vyjimky pro
chybové stavy atd. Zjednodusi to kéd oproti C, kde by se muselo ru¢né kontrolovat kazdé
voldni funkce (v Nimu lze pouzit try/except podobné jako v Pythonu, ale s miniméln{ rezif).

* Multiplatformnilogika: Pokud ¢4st kédu ma bézet i na PC i na MCU (napt. néjaka knihov-
na sdilend mezi firmware a simula¢nim modelem na PC), tak Nim je vybornd volba. Stejny
zdrojovy kéd mizete zkompilovat do JavaScriptu (pro webovou simulaci), do nativni aplikace
i do firmware (pfes C). Nemusite psit vyrazné odlisny kéd pro rizna prostiedi.

Omezeni tu samoziejmé jsou. Nim neni idedlni pro iplné nejmensi osmibitové mikrokontroléry

s par kB paméti, pokud bychom chtéli vyuzivat komfortni funkce (dynamické fetézce, haldy). Sice

32

— 2 Software

se d4 i tam nasadit Nim (s pfepinacem --gc:none), ale prakticky byste museli psit kéd sice v Nimu,
ale ,jako v C¥, takze by vyhoda jazyka z&isti padla. Pro 32bitové MCU s desitkami kB paméti uz
ale Nim pohodlné funguje.

Dalsi omezeni je mensi komunita. Na problém moznd nenajdete odpovéd tak rychle jako u C &i
Arduina. Také néstroje (ladéni, trasovani) nejsou tak vyspélé. Neexistuje ekvivalent JTAG debug-
geru, ktery by byl integrovany pfimo s jazykem Nim. PouZivaji se standardni néstroje pro C, ale to

muze byt nékdy nepohodlné kviili odlisnostem.

Ukazka ,Hello World”

Pripomerime si, ze Nim miiZzete spustit i na Arduino UNO (ATmega328P), které ma pouhych
2 kB RAM. Kompilator to zvladne diky moZnosti vypnout runtime a pfizptsobit se dané archi-

tektufe. Konfiguraéni soubor pro pteklad mize vypadat napf. takto:

config.nims - nastaveni pro AVR

switch("os", "standalone") # zadny 0S

switch("cpu", "avr") # cilova CPU architektura

switch("gc", "none") # zadny garbage collector

switch("stackTrace", "off") # nevkladat stack trace info

switch("lineTrace", "off") # nevkladat debug info o rFadcich

switch("passC", "-mmcu=atmega328p") # parametry pro avr-gcc (pfeklad pro MCU)
switch("passL", "-mmcu=atmega328p") # parametry pro linker

Takto zajistime, Ze Nim vygeneruje C kéd pro AVR a pouzije pro kompilaci AVR-GCC. Samot-
ny kéd v Nimu pak mize pfimo manipulovat registry MCU. Napf. rozblikini LED na pinu 13
(Arduino UNO) by slo takto:

const DDRB* = cast[ptr uint8] (0x24) # Data Direction Register B (ATmega328P)
const PORTB* = cast[ptr uint8] (0x25) # Port B Data Register
proc delay_ms*(ms: int) =

jednoduchd prodleva pomoci smycky

for i in @ ..< ms*1000: discard # (na 16MHz CPU ~ orientac¢ni cekani)

Inicializace - nastav PB5 (arduino pinl3) jako vystup
DDRB[] = DDRB[] or 0b0010_0000
while true:
PORTB[] = PORTB[] xor 0b0010_0000 # prepni bit LED
delay_ms (500)

33

— 2 Software

Vyse uvedeny kéd je ilustra¢ni. Ukazuje ptistup k pamétovym adresim (pomoci cast [ptr uint8])
a nekoneénou smycku blikdni. PfeloZzeny program muzete nahrit do Arduina standardnim po-
stupem (napf. pomoci avr-objcopy pfevést na .hex a nahrit pomoci avrdude). Je tu hezky vidét, ze
cyklus lze udélat pythonovskym zdpisem atd.), a pfitom vysledek po prekladu je velmi podobny

strojovému kédu.
Dostupna literatura a online zdroje

* Oficidlni pfirucka Nim: dokumentace na nim-lang.org obsahuje manudl popisujici jazyk
a standardni knihovnu. Pro vyvoj elektroniky jsou dilezité hlavné kapitoly o spravé paméti
a integraci s C.

* Kniha,Nimin Action“ (Dominik Picheta, Manning 2017): tvod do jazyka a praktické pro-
jekty. I kdyZ neni zaméfena pfimo na MCU, tak pokryva podrobné volani kédu v C a vyko-
nové aspekty.

* Nim community forum (forum.nim-lang.org): aktivni férum, kde najdete vldkna o pouziti
Nim na ESP32, Arduino a dalsich. Casto tam plispivaji samotni tviirci jazyka.

+ Clanek ,nim for embedded software development“ (na Dev.to): zkugenosti vyvojafe s pou-
zitim Nim pro MCU, véetné ukazky nastaveni pro AVR.

* Repozitit Awesome Nim: komunitni seznam knihoven a projekta (GitHub
nim-lang/awesome-nim), ktery zmifiuje i vyuziti Nimu pro elektroniku.

2.1.2 Forth

Forth je nestdrnouci klasika mezi programovacimi jazyky pro systémy s malymi procesory. Jde
o zdsobnikové orientovany jazyk a zaroveii jednoduché interaktivni vyvojové prostfedi, ktery navrhl
v 60. letech Chuck Moore a ktery byl hojné vyuzivin v 70. az 90. letech v primyslovych vesta-
vénych aplikacich. Paradigma Forthu je ojedinélé: je to konkatenativni (sklddajici) jazyk, kde se
program sklida z posloupnosti slov (tokent), které operuji nad spoleénym datovym zdsobnikem.
Forth nezn4 klasické proménné a datové typy v béZném smyslu (ve jsou jen &isla na zdsobniku),
nemd syntakticka omezeni (fidici struktury pouzivaji specialni slova). MiiZeme ho oznacit za pro-
ceduralni jazyk bez kontroly typud (pfesto se dd ve Forthu definovat napf. oddéleny zésobnik pro
desetinnd &isla atd., ale to je implementalni detail).

Dualezitou vlastnosti je, Ze Forth typicky béZi s interaktivnim interpretem, je tedy zaroven vyvo-
jovym prostiedim (IDE), kde uzivatel miize za béhu systému zadédvat ptikazy, zkouset funkce atd.

Forth je vyrazné odlisny od mainstreamovych jazyka. Je postaven na RPN (obrdcend polska no-
tace, reverse polish notation), kde se zapisuji nejprve operandy, a za né operace. Vsechny operace

34

http://nim-lang.org

2 Software

berou parametry ze zdsobniku a vysledek uklddaji zpét. Napi. soucet 2 a 3 se zapiSe jako 2 3 +
(kde ,plus* je slovo, které vezme dvé &isla ze zdsobniku, secte a vysledek ulozi opét na zasobnik).

Ve Forthu neexistuje syntakticky rozdil mezi ,jazykem® a ,vestavénymi funkcemi®, protoze celé
prostfedi Forthu je definovdno souborem slov (vetné fidicich struktur jako IF..ELSE..THEN, smy-
&ek po. .Loop atd.). Uzivatel mize za béhu definovat nov4 slova (vlastni funkce), a ta se okamzité
stavaji soucasti jazyka. Forth je tedy extrémné flexibilni a rozsifitelny; zkuSeny programitor si
muze pfizplsobit celé prostfedi podle potieby. Z jinych jazyki ma blizko snad jen k PostScriptu
(ktery je také zdsobnikovy) nebo modernéj$im jazykim jako Factor, ale v mnoha ohledech je
Forth skute¢né unikitni.

Hlavni rysy jazyka

Interaktivnost: Forth typicky bézi na cilovém zafizeni jako interpret, ke kterému je mozné
se pfipojit (napf. pfes sériovou linku) a zaddvat piikazy. Okamzité po zadini piikazu je vidét
vysledek. To urychluje vyvoj a ladéni; nepotiebujete plny debugger, stadi konzole. Proto se
Forth pouzivé ¢asto i jako zabudovany monitor v pramyslovych zafizenich.

Kompilace a interpretace: Forth pouZiva tzv. threaded code, kde se nové slovo (funkce) kom-
piluje jako sekvence voldni jinych slov. Kompilace je velmi rychld a probihd pfimo na zafizeni
(tzv. self-hosted). Z pohledu uZivatele se stfidaji dva rezimy: interpretation state (piikazy se
ihned vykondvaji) a compile state (ptikazy se misto vykonani kompiluji do definice nového slo-
va). Pfepnuti do compile state nastane po zaddni slova : (dvojtecka, tedy zacatek definice slova)
a zpét do interpretace se pfejde po ; (stfednik, konec definice). Tato dualita déva Forthu
schopnost definovat slova za béhu a hned je volat.

Extrémni efektivita a nizké naroky: Implementace Forthu jsou velmi malé. Jednoduché jad-
ro Forthu (interpreter + kompildtor + zdkladni slovnik) se vejde do nékolika kilobajti paméti.
Naptiklad AmForth pro mikrokontroléry AVRS potiebuje jen ~8-12 KB flash a ~200 bajtd
RAM pro béh zikladniho systému. Na druhou stranu Forth nemd komfortni automatickou
spravu paméti, vie musite udélat ru¢né (ale v malych MCU to nevadji, tam pamétovou haldu
Casto nepotiebujete viibec).

Jednoduchost béhového prostiedi: Klasicky Forth nepotfebuje Zddny operacni systém ani
volani sluzeb. Muze bézet pfimo od resetu MCU jako holy firmware. Implementuje si ¢as-
to i vlastni miniaturni opera¢ni systém (napf. jednoduchy planova¢ uloh, souborovy systém
v paméti atd.) Mnohé implementace Forthu také podporuji multitasking (kooperativni nebo
preemptivni) uvnitf sebe sama, i bez podpory ze strany OS. To znamend, Ze jediné, co musite
na MCU zajistit, je nastaveni ukazatele zdsobniku a skok na start Forth VM.
Pienositelnost a standardizace: Forth byl formalizovin v ANSI standardu (ANS Forth
1994, pozdéji Forth 200x). Diky tomu existuje mnozstvi implementaci, které jsou do velké
miry kompatibilni. Programy napsané v mezich standardu ptjde zprovoznit na riznych sys-
témech s minimem uprav. Pro MCU se ale Casto pouzivaji podstandardni implementace (napx.
minimdlni jadro bez nékterych sloZitych slov kviili uspofe paméti).

35

Libila se Vam ukazka
z knihy? Knihu
muzete zakoupit na
HWKITCHEN.cz

https://www.hwkitchen.cz/kity-bity-neurony-moderni-technologie-pro-hobby-elektroniku-martin-maly/

	Předmluva vydavatele
	Poděkování
	Předmluva
	1 Chvála bastlení
	2 Software
	2.1 Mikrokontroléry nejsou jen C/C++ a Python

	Prázdná stránka

